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ABSTRACT: Data envelopment analysis (DEA) is a useful tool to measure and recognize the effectiveness and 

performance of decision-making units. On the other hand, analytical hierarchy process (AHP) is a useful tool in the 

field of multi-criteria decision-making problems (MCDA) and it can be helpful to rank the set of options with distinct 

criteria and choose the best or most appropriate option among them. In 2004, a hybrid method so-called DEAHP 

was resulted from AHP and DEA methods proposed or suggested by Ramanatan through which the relative weights 

of options and criteria can be obtained from the matrix of paired comparisons. However, the weights generated by 

DEAHP may be quite irrational even wrong for a highly inconsistent pairwise comparison matrix. With a violation 

example we showed that the proposed model does not preserve the ranking. Therefore, in the current research we 

use the symmetric weights for a more logical choice of criteria and options. 
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INTRODUCTION 

Data envelopment analysis (DEA) is a useful tool 

for measuring and identifying the efficiency of 

decision making units. Data envelopment analysis has 

been used to determine the best weights through 

measuring the efficiency and it aims to recognize the 

efficiency of a system or a decision making unit. 

One of the most important limitations in 

conventional DEA model is excessive weight flexibility, 

which seeks maximum efficiency by DMU. This 

process will bring up two problems. First the 

generated weights are implausible because DEA 

ignore one or more variable, second, they are 

unacceptable because the results are inconsistent 

with expert judgments prepared by DM. The flexibility 

of conventional DEA models lead to generate illogical 

weights. Therefore, the weight restrictions are 

necessary to solve these problems. 

On the other hand, analytical hierarchy process 

(AHP) is an appropriate tool in the field of multi-

criteria decision making problems (MCDA) and it can 

be useful for rating a set of options with different 

criteria and choosing the most appropriate or best 

option. Analytical hierarchy process is one of the most 

comprehensive systems for decision making with 

multiple criteria. 

In 1986, Thomas Saati (the founder of this 

method) proposed the following four principles as the 

principles of the analytical hierarchy process and 

established all calculations, rules and regulations on 

the basis of these principles.  

These principles are: 

Principle1: reverse condition: if the preference of 

element A to element B is equal to n, the preference of 

element B to element A will be equal to 1/n. 

Principle2: homogeneity principle: elements A 

and B should be homogenous and comparable. In the 

other words, the preference of element A to element B 

cannot be infinite or zero. 

Principle 3: dependency: each hierarchal element 

can be related to the element upper than itself and 

this dependency can be continued up to the highest 

level. 

Principle 4: expectations: whenever a change 

occurs in a hierarchical structure, the evaluation 

process must be done again. 

Today, analytical hierarchy process (AHP) has 

been more developed in both areas of theory and 

practice. Apart from Saaty’s eigenvector method (EM) 

(2000), which is the most widely used priority method, 

Chu et al. (1979) proposed a weighted least-squares 

method (WLSM). Crawford (1987) proposed a 

logarithmic least-squares method (LLSM). Saaty and 

Vargas (1984) presented a least-squares method 

(LSM). Cogger and Yu (1985) suggested a gradient 

eigenweight method (GEM) and a least distance 

method (LDM). Islei and Lockett (1988) developed a 

geometric least-squares method (GLSM). Bryson 

(1995) put forward a goal programming method 

(GPM). Bryson and Joseph (1999) also brought forward 

a logarithmic goal programming approach (LGPA) and 

other alternative approaches 

Since these two methods cannot alone provide a 

good solution to determine the best option, data 

envelopment analysis is a technique that evaluates the 

decision making units at the best. In this technique, 

the previous data or external data is not used as much 

as possible, but there are situations in which 

additional information is available or decision makers 

are willing to enter their personal comments and 

preferences. 

DEAHP, a combination of DEA and AHP methods, 

introduced by Ramanatan (2006). Uses DEA for 
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determining the relative weights of criteria and 

options. This method has some significant difficulties. 

Such as it allows decision making units to choose 

weights freely, gives the high weights to outputs 

having strengths, gives the zero weight to outputs that 

have weaknesses, evaluate the non-logical relative 

weights to the paired comparison matrixes and also 

does not maintain the ranking. 

The remainder of this paper has the following 

structure: In Section 1, briefly reviews DEA and DEAHP 

and cross-efficiency with symmetric weights. In 

Section‌2, the recommended method for solving the 

DEAHP problem. Section 3 illustrates the proposed 

method using an example. Finally, conclusions are 

given in Section 4.  

BACKGROUND 

1) Data envelopment analysis: Defining the 

principle DEA, in detail, is out of this papers scope and 

the complete review has given in several Papers for 

instance in (1978). A brief description of DEA 

technique is provided in following. Assuming that 

there are n DMUs each with m inputs and s outputs, 

the relative efficiency of a particular DMU0‌(  n,...,2,10

) is obtained by solving the following the fractional 

programming model: 
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Where j is DMU index  j=1,…, n, xij (i=1, …, m) the 

value of i
th

 input for the j
th

 DMU, yrj (r=1, …, s) the value 

of r
th

 output for the j
th

 DMU, ur (r=1, …, s) are the 

weights of outputs, Vi(i=1,…, m) are the weights of 

inputs and let DMU0 be a DMU under evaluation. 

DMU0 is the efficient if and only if θ0=1. 

The efficiently of DMU0 is defined as the ratio of 

weighted its outputs to weighted inputs subjected to 

the condition that the similar ratios for all DMUs be 

lower than or equal to 1. A relative efficiency score of 1 

indicates that the DMU under consideration is 

efficient, whereas a score lower than 1 implies that it is 

inefficient. This fractional program can be converted 

into a liner programing problem: if either the 

denominator or numerator of the ratio is forced to be 

unity, then the objective function will become linear, 

and a linear programming problem: if either the 

denominator or numerator of the ratio is forced to be 

unity, then the objective function will become linear, 

and a linear programming problem can be obtained. 

By setting the denominator of the ratio equal to 1, the 

reformulated liner programming problem, also known 

as the multiplier from of CCR input–oriented model, is 

as follows: 
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Note that by setting the numerator equal to 1, the 

multiplier from of CCR output–oriented model is 

obtained. Because of the nature of formulations, the 

optimal objective function values of the CCR input and 

output oriented represent the reciprocal of efficiency 

scores. 

 

2) DEAHP method 
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be a pairwise comparison matrix with aii=1 and 

aji=1/aij for j≠i and W= (w1…, wn)
T
 be its priority vector. 

The DEAHP views each row of the matrix A as a DMU, 

each column as an output and assumes a dummy 

input value of one for all the DMUs. Each DMU has 

therefore n outputs and one dummy constant input, 

based on which the following input–oriented CCR 

model 4 is constructed to estimate the local priorities 

(weights) of the pairwise comparison matrix A: 
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Where DMU0 represents the criterion or 

alternative under evalution. The optimum objective 

function value of the above model, *

0w , represents the 

DEA efficiency of DMU0 and is used as its local priority. 

LP model (4) is solved for all the DMUs to obtain the 
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local priority vector T*

n

*

1

* )w,,w(W   of the 

pairwise comparison matrix A. It has been proved that 

the DEAHP can derive true weights if A is perfectly 

consistent, that is, A meets the condition of 

kjikij aaa  for all i, j, k = 1, …, n. 

This model is solved for all the DMUs to generate the 

weight vector T*

n

*

1

* )w,,w(W   of A. 

DEAHP offers the following two models to calculate 

the final weight. 

1. It calculates the relative weights of criteria 

without taking into account the relative 

weight of criteria. 
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2. It has calculated the final weight of options 

considering the relative weight of criteria. 

If we want to measure the relative weight of the DEA 

model, we use the limitations of the assurance area as 

follows: 
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DEAHP method has some disadvantages and the 

main problem with this approach is that the decision 

making units are allowed to freely choose the weights 

and much weight is given to the outputs that have 

strengths and the zero weight is given to those that 

have weaknesses; and therefore, unreasonable 

relative weights are calculated for the paired 

comparison matrices that to overcome these 

drawbacks, we propose a new method in which we 

overcome these problems though applying weight 

restrictions. 

 

 

Applying weight restrictions has some problems 

such as infeasibility of the problem, but we apply 

these restrictions in such a way that first, the problem 

remains feasible and second, it chooses the weights 

symmetrically so that it does not have the problem of 

DEAHP that is the freely choice of weights. 

 

3) Cross-efficiency with symmetric weights 

Dimitrov and Sutton (2010) have presented a 

model for restricting weights with the goal of 

promoting symmetry in weight allocation. Then, 

Jahanshahloo et al. (2011) offer a secondary goal for 

cross-efficiency evaluation (1986), in which emphasize 

selecting symmetric weights by DMUs. 

One of the most severe limitations of 

conventional DEA models is their excessive weight 

flexibility, allowing a DMU to seek maximum efficiency 

by selecting a mix of weights that either is implausible 

because it ignores one or more variables, or is 

unacceptable because it is inconsistent with expert 

judgment available to the DM. Furthermore, freely 

selecting weight allocation may lead to two DMUs 

having equal efficiency scores one with all of its weight 

on one variable and another with its weight 

symmetrically allocated to all variables. Thus, this 

shortcoming has led to the development of weight 

restrictions DEA models. Allen et al. (1997) considered 

a lower and upper bound on outputs or inputs as 

follows: 

.j,idxvc,j,rbyua iijiirrjrr          (7) 

 

But by adding these restrictions to the DEA 

models, the programs will often be infeasible, and 

using explicit boundaries for weights is a difficult task. 

Therefore, Dimitrov and Sutton (2010) have proposed 

a model that not only has each DMU rating itself as 

efficient as possible relative to the other DMUs, but 

also explicitly rewards DMUs that make a symmetric 

choice of weights. The measure of symmetry is the 

relative weight of each output dimension to all other 

output dimensions: 

., jizyuyu ijojjoii                                  (8)  

 

     in (8) is the difference in symmetry between 

output dimension i and dimension j for the DMU 

under evaluation. So, if we minimize the sum of all the 

Z values (Z =      ), then we effectively reward 

symmetry with a symmetry scaling factor    . 

Adding the symmetry constraint to the objective 

function rewrites (2) to 
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where e = (1,1,...,1)
T
. 

 

Note that (9) is not linear with the equality constraint. 

Fortunately, as minimizing ZeeT  may change the 

equality to   as any optimal solution will have the 

equality constraint satisfied. With this observation, 

rewrite (9) to a linear program as: 
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Clearly, ),1[o  . Note that the linear program 

(10) has the same feasibility region as the linear 

program (9). Instead of having an explicit bound, we 

introduce the symmetry scaling factor b as a non-

negative importance factor. The above-mentioned 

subjects can be used for the output-oriented 

formulation and the BCC model (1984). Also, this 

approach can be extended based on some preference 

structures (2010). 

The cross-efficiency method with symmetric 

weights is in the following algorithm (2011).  

Step 1: Determine simple efficiencies,‌

)n,,1o(,o   for all DMUs after solving model (10). In 

this step, we obtain weights as ),( **

oo vu .  

Step 2: The cross-efficiency for any jDMU , using 

the weights that oDMU  has chosen in model (10), is 

then    ,,,1,,
*
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njo
xv

yu
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where (*) denotes optimal values in model (10). For

)n,,1j(DMU j  , the average of all )n,,1o(,oj  , 

namely )n,,1j(,
n

1 n
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 is our new cross-

efficiency score for jDMU . 

 

The recommended method for solving the 

DEAHP problem 

In this section we discuss our proposed model. 

The row elements consider the paired comparisons 

matrix as the output of DMU and select the consonant 

virtual input equal to 1 for all DMU to obtain the 

relative weights of the paired comparisons matrix   

[   ]   
. 

The multiple forms of CCR model are used as 

input. Suppose              is jth output weight, 

that is   , and    is the input weight. In this case, the 

model will be as follows: 
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Using the above model, we obtain the measure of 

cross efficiency of oDMU  as *

o  that refers to the 

under evaluation criterion or option. The method of 

cross efficiency with symmetric weights is solved for 

all the DMUs to generate the weight vector 
T*

n

*

1

* ),,(    of A. DEAHP offers the following two 

models to calculate the final weight. 

1. It calculates the relative weights of criteria without 

taking into account the relative weight of criteria. 
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2. It has calculated the final weight of options 

considering the relative weight of criteria. If we 

want to measure the relative weight of the DEA 

model, we use the limitations of the assurance area 

as follows: 
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Using two above models, we obtain the measure 

of cross efficiency of oDMU  as *

o  that refers to the 

under evaluation criterion or option. The method of 

cross efficiency with symmetric weights is solved for 

all the DMUs to generate the final weights. 

The idea behind models 11 and 12 is to identify 

optimal weights which restrict by promoting symmetry 

goal in weight allocation. In these models, we 

introduce an approach to reward by symmetry 

selecting weights, a suitable method because of 

centralization weights on only one variable.  

 

It may be undesirable by funding agencies, 

financial portfolio selection, etc. So, in the proposed 

method, we select the measure of cross efficiency with 

symmetry weights to the under evaluation criterion or 

option.  

 

Numerical example 

Consider the following pairwise comparison 

matrix, which is borrowed from Saaty (2000): 
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Results for different methods (Wang et al. (2008)) 

and result of our method are prepared in Table (1). 

Table 1. Weights and ranking orders obtained by different priority methods. 

Priority method 
1w  2w  3w  4w  5w  6w  

EM 0.3208(1) 0.1395(3) 0.0348(6) 0.1285(5) 0.2374(2) 0.1391(4) 

WLSM 0.4150(1) 0.0936(5) 0.0348(6) 0.1123(4) 0.2190(2) 0.1253(3) 

LSM 0.1845(4) 0.2204(1) 0.0371(6) 0.1504(5) 0.2103(2) 0.1937(3) 

LLSM 0.3160(1) 0.1391(4) 0.0360(6) 0.1251(5) 0.2360(2) 0.1477(3) 

GLSM 0.3407(1) 0.1205(5) 0.0575(6) 0.1495(3) 0.2013(2) 0.1305(4) 

GEM 0.3746(1) 0.1722(3) 0.0275(6) 0.1252(4) 0.2254(2) 0.0751(5) 

FPM 0.3492(1) 0.1438(3) 0.0528(6) 0.1232(5) 0.1917(2) 0.1392(4) 

CCMA 0.2768(1) 0.1695(3) 0.0295(6) 0.1555(5) 0.2072(2) 0.1615(4) 

DEAHP 1.0000(1) 1.0000(1) 0.3333(6) 1.0000(1) 1.0000(1) 1.0000(1) 

LP-GFW 0.4042(1) 0.2130(3) 0.0466(6) 0.1793(5) 0.3827(2) 0.2056(4) 

Our method 0.9565(1) 0.6158(4) 0.2745(6) 0.9192(2) 0.628(3) 0.5755(5) 

 

CONCLUSION 

In this paper we have analyzed main difficulties of 

the DEAHP and proposed a method of cross-efficiency 

evaluation with selecting symmetric weights to 

overcome these problems.  
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